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Abstract A continuous evolution of business process parameters, constraints and needs, hardly foreseeable
initially, requires a continuous design from the business process management systems. In this article we are
interested in developing a reactive design through process log analysis ensuring process re-engineering and
execution reliability. We propose to analyse workflow logs to discover workflow transactional behaviour and
to subsequently improve and correct related recovery mechanisms. Our approach starts by collecting workflow
logs. Then, we build, by statistical analysis techniques, an intermediate representation specifying elementary
dependencies between activities. These dependencies are refined to mine the transactional workflow model.
The analysis of the discrepancies between the discovered model and the initially designed model enables us
to detect design gaps, concerning particularly the recovery mechanisms. Thus, based on this mining step, we
apply a set of rules on the initially designed workflow to improve workflow reliability.
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1 Introduction

The increasing use of Workflow Management Systems (WfMS) in companies expresses their undeniable im-
portance to improve the efficiency of their processes and their execution costs. However, with the technological
improvements and the continuous increasing market pressures and requirements, collaborative information sys-
tems are becoming more and more complex, involving numerous interacting business objects. Consequently,
in spite of its obvious potential, WfMS show some limitations to ensure a correct and reliable execution. Due
to the complex design process and the initially unforeseeable character of other parameters which appear after
the execution phase (users’ evolution needs, unexpected execution exception, etc.), it is impossible to easily
foresee and initially realize all necessary parameters for a “perfect” design.

A great diversification of company services and products lead to a continuous process evolution. New re-
quirements emerge and existing processes change (“the only constant is change”). Consequently, the alignment
of a process in regard to its observed evolution requires a permanent attention and reaction during the process
life cycle. To maintain this alignment it is important to detect changes, i.e. the deviations of the described or
prescribed behaviour. Analysing interactions of those complex systems will enable them to be well understood,
controlled, and redesigned. It is obvious that the discovery, and the analysis of workflow interactions at run-
time, would enable the designer to be alerted of design gaps, to better understand the model and to correct the
recovery mechanisms. Indeed, this kind of analysis is very useful in showing cause effect relationships and to
analyse the discrepancies between the discovered model and the initially designed model. These discrepancies
can be used to detect initial design gaps which may be used in a re-engineering process.

Most previous approaches develop a set of techniques to analyse and check model correctness in their
respective workflow model [1-4]. Although powerful, these approaches may fail to ensure reliable workflow
execution in some cases. Indeed, it is neither possible nor intended by workflow designers to model all failures.
As such the process description will become complex very soon [5]. Furthermore, workflow errors and excep-
tions are commonly not detected until the workflow model is executed. In this article, we present an original
approach to ensure reliable workflow transactional behaviour. Different from previous works, our approach
allows to address process evolution requirements and to correct potential design errors after runtime using
workflow logs. Previous works only use specification properties which only reflect the designer’s assumptions.

Basically, we describe a set of mining techniques which we have specified, proved and implemented in or-
der to discover and improve workflow transactional behaviour. These workflow mining techniques are suitable
tools to detect process changes during the execution which can reflect process evolution. Our approach aims
at detecting and correcting design errors due to omissions in the initial design or workflow schema evolutions
observed at runtime. With that aim, we discover firstly the “real” transactional workflow based on its execution
logs. Thereafter, we use a set of rules to improve and correct its transactional behaviour. To the best of our
knowledge, there are practically no approaches addressing transactional workflow re-engineering using mined
results from logs. A set of tools were implemented in order to validate the different steps of our work.

1.1 Motivating Example

In this article, we will illustrate our ideas using a running example (see Figure 1). We consider a car rental sce-
nario where one party acts as a broker offering to its customers a set of services based on the customer’s earlier
choice in the Customer Requirements Specification (CRS) activity. The Customer Identity Check (CIC) activ-
ity checks the customer ID while the Car Checking Availability (CCA) activity and the Parking Localisation
(PL) provide information about available cars and the respective car rental companies supplier. Afterwards, the
customer makes his choice and agrees on rental terms in the Car Agreement (CA) activity. Then, the customer
is requested to pay either by Credit Card (CC), by CHeck (CH), or by caSH (SH). The customer can combine
the payment by check and by cash. Finally, the bill is sent to the customer by the Send Bill (SB) activity.

To deal with workflow failures and to ensure a reliable execution, designers specify additional transactional
interactions (dotted arrows). In our example, it was specified that if CA fails then the compensation activity
(DBC) compensates already executed activities and the car rental discovery process (CIC, CCA and PL) should



Figure 1 Workflow Example in BPMN
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be restarted. To ensure the car rental payment, the payment by credit card was specified as an alternative if the
payment by check fails, and the payment by cash is simultaneously cancelled if it was combined with the failed
payment by check. Besides, CC has the capability to be (re-)executed until success in case of failure. As for
the failures of CCA (the workflow instance does not find any car propositions), the workflow instance cancels
the CIC execution and restarts the CCA execution to (re-)enter the client requirements. The workflow designer
did not provide failure handling mechanisms for the other activities and assumes that these activities never fail,
or are not critical'.

Let us suppose now that in reality (by observation of sufficient execution cases? [6]) CCA never fails but
CIC can fail. This means there is no need to specify a recovery mechanism for CCA, and as CIC can fail we
should also provide a recovery mechanism for it to resume the workflow execution. Starting from workflow
logs, we propose, in this article, a set of workflow mining techniques that detect these transactional design
gaps and provide help to correct them. Indeed, such incorrect specifications of the transactional behavior can
result in unpredictable behavior, which, in turn, can lead to unavailability of resources, information integrity
problems and global workflow execution failure.

Basically, there are two main approaches that deal with failures in existing BPMSs [7]: Ad Hoc and Run
Time. The former specifies the exception handling logic within the normal behavior of the workflow. This
makes the design of the workflow complicated for the designer. The raising of expected exceptions is typically
unpredictable. Thus, it is often impossible to represent all exceptions of the business process model at design
time. To overcome the limits of the first approach, the second one deals with exceptions at and after run
time, meaning that there must be a business process expert who decides which changes have to be made to the
business process logic in order to handle exceptions. In general, the first approach offers extreme and expensive
solutions, and therefore some activity failures may deserve an a posteriori handling through a re-engineering
process. In this case, activity failures are discovered after run time, and can be then re-designed. Our work
can be considered as the first attempt to use mining techniques to ensure workflow execution reliability and
workflow re-engineering.

1.2 Overview

Figure 2 depicts an overview of our approach through the following steps :

— Collecting workflow logs: The purpose of this phase is to keep track of the workflow execution by captur-
ing the relevant generated events. The number of instances and the log structure should be sufficiently rich
to enable transactional mining.

! Their failures do not affect the execution of the workflow instance

2 A sufficient execution cases is the number of workflow instances that are considered enough by the workflow designers to
reproduce all possible workflow behaviours and to enable the workflow re-engineering phase



Figure 2 Overview
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— Mining the “real” transactional workflow: The purpose of this phase is to mine the effective control
flow (workflow pattern) [8,9] and transactional flow (activity transactional properties and dependencies)
[10,11] based on its log only. We proceed in two steps. First, we perform statistical analysis to extract
statistical dependency tables from workflow log. Then, a statistical specification of the control flow and the
transactional flow is extracted using a set of rules applied on the statistical dependency tables.

— Re-engineering the transactional behaviour: Based on the mined results obtained from the previous step,
we use a set of rules providing suggestions to correct and improve the workflow transactional behaviour and
thereafter the workflow execution reliability. These rules depend on transactional consistency rules spec-
ified by the transactional workflow model. The designers decide based on the business process semantics
and requirements on the set of suggestions to apply.

The remainder of this article is structured as follows. First, some distinctive concepts and prerequisites are
detailed in section 2 to describe the adopted workflow transactional model. Therefore, we present in section
3 the structure of workflow event logs. Afterwards, we detail our transactional workflow mining techniques:
section 4 computes statistical analysis upon logs, and section 5 discovers the transactional workflow model
based on a statistical specification of its behaviour. Based on these mined results, we use a set of rules to
improve workflow failure handling and recovery, and consequently process reliability (section 6). We illustrate,
in section 7, the implementation efforts done to validate our approach. Finally, section 8 discusses the related
works, before concluding in section 9.

2 Transactional Workflow Model

WEMS are expected to recognize and handle errors to support reliable and consistent execution of workflows.
Since business processes contain activities that access shared and persistent data resources, they have to be sub-
ject to transactional semantics [12,13], and must span multiple transaction models and protocols native to the
underlying legacy systems upon which the workflows are dependent. As [14] pointed out, the introduction of
some kind of transactions in WfMSs is unavoidable to guarantee reliable and consistent workflow executions.
Traditional transaction processing models [15] are inadequate for processing specialized transactions including
workflow applications, which have long-duration transactions, and a set of activities that must be properly co-
ordinated to ensure correct behavior. To address this shortcoming, researchers have proposed various advanced
transaction processing models [7,16-19] that are suitable for executing such specialized applications. These
advanced transaction processing models coordinate their activities using different kinds of dependencies.
Transactional workflows propose to combine workflow flexibility and transactional reliability in order to
deal with these issues. They have been introduced in [20] to clearly recognize the relevance of transactions



in the context of workflows. In the following, we present a synthetic description of a common and extensible
transactional workflow model which was specified in our previous works [21,22]. Basically, within transac-
tional workflow models, we distinguish between the control flow (continuous arrows in the motivating example
in Figure 1) and the transactional behavior (dotted arrows in the motivating example in Figure 1).

2.1 Control flow

The control flow (or skeleton) of a workflow specifies the partial ordering of component activity activations.
Within a workflow instance where all activities are executed without failure or cancellation, the control flow
defines activity dependencies. In order to enhance reusability and common comprehension, we use the work-
flow patterns [23] as an abstract description of a reoccurring class of dependencies to describe the control flow
as a pattern composition.

Figure 3 Patterns categories
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We emphasize on the following seven patterns sequence, AND-split, OR-split, XOR-split, AND-join, OR-
join, XOR-join and m-out-of-n® to explain and illustrate our approach. We divided the workflow patterns in three
categories (Figure 3) : sequence, split and join patterns. For instance, AND-join(ay, ..an, b), which belongs to
the join category, describes the convergence of n (two or more) branches {a1,..an} into a single subsequent
branch b such that the thread of control is passed to the subsequent branch when all input branches have been
enabled.

2.2 Transactional Behaviour

The transactional behaviour is observed in case of activity failures and defines recovery mechanisms supporting
the automation of failure handling during runtime. Recovery mechanisms are used to ensure workflow fault-
tolerance which is defined as the property allowing a business process to respond gracefully to expected but
unusual situations and failures (also called exceptions). Basically, the transactional behaviour is described
through the activity’s transactional properties and the transactional flow depicting respectively the intra and
the inter activity transactional dependencies after activity failures. The transactional dependencies play an
important role in coordinating and executing a workflow instance. These dependencies define the relationships
that may exist between the events reporting activity execution state (cancelled, failed, and terminated) of one or
two activities specifying respectively the intra-activity state dependencies (i.e activity transactional properties)
or the inter-activity state dependencies (i.e transactional flow).

2.2.1 Activity transactional properties
Every activity can be associated to a life cycle statechart that models the possible states through which the

executions of this activity can go, and the possible transitions between these states. These transitions describe
the intra-activity state dependencies on which depend the activity transactional properties.

3 The used m-out-of-n pattern inherits from the canceling discriminator, i.e. triggering the OR gateway in this pattern, cancels
the execution of all of the other incoming parallel branches



Figure 4 Activity transactional properties
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The main transactional properties that we are considering are retriable and pivot [24] (Figure 4). An activity
a is said to be retriable (a”) iff it is sure to complete successfully. Even if it fails, a” is reactivated until
successful execution. For instance, in our motivating example (see Figure 1) CC is retriable. a is said to be
pivot (aP) iff once the activity successfully completes, its effects remain and cannot be semantically undone
or reactivated. A pivot activity cannot be compensated. For instance, in our motivating example (see Figure 1)
CIC, CCA, and PL are not pivot because they can be compensated by DBC.

2.2.2 Transactional flow

The transactional flow specifies the inter-activity state dependencies after activity failure. We distinguish two
different transactional dependencies in the transactional flow: alternative (transactional)* dependencies, and
cancellation dependencies. After the failure of an activity, a recovery process can be initialized by an alternative
dependency that activates another activity, which is located through a related coherent point, to resume instance
execution. An activity failure can cause a cancellation (non-regular or abnormal end) of one or more active
activities which is described through a cancellation dependency. This dependency can be enacted within the
recovery mechanism in order to regain a consistent state. Indeed, the cancellation of running activities, after
the activity failure, can avoid their undesired terminations.

The transactional behaviour depends on the control flow. Consistency relations between the control flow (i.e
workflow patterns) and the transactional behaviour (i.e transactional properties and transactional dependencies)
will be described later in this article (see section 6.1)

2.2.3 Recovery mechanisms

This section outlines the transactional recovery rules that govern the recovery mechanisms after activity fail-
ures. During the execution of a transactional workflow, it has to be decided, after an activity execution failure
(i.e observation of failed state), whether an inconsistent state was reached. According to this decision either a
recovery procedure has to be started or the process execution continues according to the control flow (if the ac-
tivity failure does not affect the execution of the workflow instance). Recovery mechanisms which are specified
by transactional dependencies allow failed workflow instances to rollback to a coherent state if an inconsistent
state was reached after activity failures. The goal is to recover the execution from a semantically acceptable
state. Thus, the incoherent failure state can be corrected and the execution can be restarted from a coherent
point thanks to the recovery mechanism. A coherent point is an execution step of the workflow (equivalent to
a save point in database transactions) which represents an acceptable intermediate execution state. It is also
a decision point where certain actions can be taken to either solve the problem that caused the failure or to
choose an alternative execution path to avoid this problem [25]. Designers define according to their business
needs for each failed activity the localisation of the coherent point. As such, exception handling is part of the

4 In the following, we omit the term “transactional”
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business logic of a workflow and may dominate its normal behaviour [26]. In summary, after an activity “a
fails, we have the following possibilities :

— The activity failure does not affect the execution of the workflow instance. The workflow instance can
continue without any specific recovery mechanism.

— An inconsistent state is reached after the activity failure. The workflow instance execution cannot continue
without a recovery mechanism. The activity is critical and should be recoverable. We distinguish between
three different recovery mechanisms:

— The activity is retriable: It is reactivated automatically until success. Such a mechanism is generally
used if the failed activity is idempotent or neutral (noted a™). An idempotent activity can be executed
one or more times without interfering with the other activity executions. For instance, CC is retriable in
our motivating example (see Figure 1), because a failure of CC has no side-effect on the other activities.

— Forward recovery: Another activity, which is situated after the failed activity or in an alternative path,
is enacted to correctly terminate the workflow execution. Thus, the workflow will enforce the regular
workflow execution, probably along another execution path. This recovery mechanism is applied in
case where the failed activity can be substituted by another activity without side-effects. For instance,
a forward recovery was specified for CH to CC in our motivating example (see Figure 1), because the
payment by credit card can completely substitute the payment by check.

— Backward recovery: The instance execution is resumed from a consistent state situated before the failed
activity. This happens when the successful execution of the failed activity is necessary for the instance
execution. It may also be necessary to start a compensation activity which removes inconsistent side
effects and semantically “undoes” the effect of the corresponding failed activity [27]. For instance a
backward recovery was specified for CA in our motivating example (see Figure 1). The instance exe-
cution is resumed from the coherent point situated after CRS in order to restart the car rental discovery
process (CIC, CCA, and PL), and DBC is executed as a compensation activity. The designers assumed
that DBC never fail. Consequently, they did not provide a recovery mechanism for this activity.

The described transactional behaviour of this workflow model is common to existing transactional work-
flows model. It is specified by a set of activities, the dependencies between these activities, and the associated
recovery mechanisms. The basic ideas of: (i) distinguishing between inter and intra activity transactional depen-
dencies, (ii) attaching compensation activities, and cancellation dependencies to the activities of the workflow,
(iii) declaring some of the activities to be critical, and (iv) defining coherent points in the process up to which
a rollback occurs in case of failure, are common to many of the transactional models proposed earlier, (e.g.
SARN [7], WAMO [28], WIDE [29], COO [30] and CREW [31]). These models typically differ in how much
flexibility the business process designer has in specifying the backward and forward execution process. In this
article, we propose a generic “basic” transactional workflow model. Adding new policies may provide support
and flexibility, but it also makes the business process model more complex. Complexity severely compromises
the usability and adoption. Therefore, our proposed transactional workflow model tries to remain in a striking
balance between expressive power and simplicity. As a consequence, the goal that guided this model is that
“right-sizing” the model, while providing room for it to evolve as the need arises. To achieve this goal, we
have determined a minimal set of recovery policies that are useful and needed in practice to adequately model
and handle most of the exceptions. We focus on recovery policies that are commonly used in practice. The
list of recovery policies is, however, not exhaustive. Indeed, new (customized) recovery policies can be added.
Thus, our model can be easily adapted or extended to any specific workflow exception handling approach. It
should be noted that our focus in this article is not on specifying a new transactional workflow model, but on a
comprehensive description of activity-based recovery policies that is used in the following as a support model
for our workflow mining and re-engineering techniques.

3 Workflow Log

Information systems might not be concerned with the details of the internal processing of their process’ activ-
ity executions. However, most process-aware management systems, such as ERP, CRM, SCM, log the external



events that capture the activities life cycle (such as activated, suspended, aborted, failed, and terminated). It is pos-
sible to record events such as (i) each event is referred to one activity (i.e, a well defined step in the workflow),
(ii) each event refers to one case (i.e, a workflow instance), and (iii) events are completely ordered [32]. Thus,
we expect that events are detectable and collectable, i.e. WEMS are required to capture and keep a workflow
log. Any information system such as ERP, CRM, or WfMS using transactional systems offers this information
in a certain form [32]. Data warehouses storing these workflow logs were proposed in the literature [33,34].
These data warehouses simplify and accelerate workflow mining techniques’ requests.

3.1 Workflow Log structure

Workflow logs can contain hundreds, even thousands of instances logs. Each instance log captures atomic
events representing the changing of its activities state. Events in the same instance are ordered. The order
between the events within the same instance is important because it is a matter of activity interaction causal-
ity. There is no bond of causality, which can influence our workflow mining approach, between the different
instances. Thus, the different instances are not ordered while their events are. Basically, we can represent work-
flow logs as a set of distinct sequences (see Definition 1), such as each sequence represents an instance log.
As shown in the UML class diagram in Figure 5, a WorkflowLog is composed of a set of EventStreams. Each
EventStream traces the execution of one case (instance). It consists of a set of events (Event) that captures the
activities life cycle performed in a particular workflow instance. An Event is described by the activity identifier
and the activity execution result state (canceled, failed and terminated).

Definition 1 (WorkflowLog)

— A WorkflowLog is a set of EventStreams. WorkflowLog=(workflowID, {EventStream;, 0 < i < number of workflow
instances}) where EventStream; is the event stream of the i*" workflow instance.
— An EventStream represents the history of a worflow instance event as a tuple stream (sequencelLog, SOccurrence) where:
— SOccurrence : int is the instance number.
— sequencelog : Event* is an ordered event set belonging to a workflow instance
— Event is defined as a tuple Event= (activityld, state), where state = (cancelled=c) V (failed=f) V (terminated=1t)

Log collecting facilities can offer different levels of granularity and collects only parts of the set of event
states. The nomenclatures of these states are generally different from one system to another. As in our case we
aim to mine only the transactional workflow behaviour described through termination events (i.e. “final” life
cycle activity events). As such, it is more practical to simply consider the following atomic events (cancelled,
failed, and terminated). These states are included in the standard activity states specified by the WfMC> [35].
Thus, we can simply choose to filter out the other states.

Although the combination of activated and terminated states can be very useful to implicitly detect the
concurrent behaviour from logs, our log structure reports only “final” life cycle activity events (cancelled, failed,
and terminated). This approach omits execution times and reports only termination events greatly simplifying
the constraints of log collecting. This “minimalist” feature enables us to exploit “poor” logs which contain only
information concerning the “final” life cycle activity events without collecting, for example, intermediate states
(such as activated, suspended)) or execution occurrence times.

It is recommended to make sure that WorkflowLogs and EventStreams are described by a single identifier.
Each activity ID should also be unique in the related workflow. If there are two activities or more in a workflow
having the same name, we assume that they refer to the same activity. Although activities usually have a unique
name, they can be present several times in the same instance: what we can observe for example in a loop.

5> Workflow Management Coalition




In the following we present the EventStream extracted from the workflow example of Figure 1 represent-
ing the 5" and the 7" workflow instance. The 5" EventStream reports a forward recovery specified by an
alternative dependency from CH to CC and a cancellation dependency from CH to SH. After the failure of
the payment by cheque, the payment by credit card was executed as an alternative and the combined payment
by cash was cancelled. The 7! EventStream describes the retriable transactional property of the CC activity in
this instance. Indeed, the payment by credit card was executed three times until success (the first two times the
payment failed). Mining algorithms to discover this transactional behaviour from logs are specified in section
5.3.1.

L = EventStream([Event(CRS, t), Event(CC A, t), Event(CIC, t), Event(PL, t), Event(C' A, t), Event(C H,
f), Event(SH, c) Event(CC, t), Event(SB, t)], 5)

L = EventStream([Event(C' RS, t), Event(CIC, t), Event(CCA, t), Event(PL, t), Event(C A, t), Event(CC,
f), Event(CC, f), Event(CC, t), Event(SB, t)], 7)

Figure 5 Structure of a workflow event Logs
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3.2 Log completeness conditions

To enable a correct mining process, the workflow logs must be “complete” by respecting the log completeness
conditions [36]. These conditions are as follows:

— Condition 1: if an activity precedes another in the control flow then there exists at least one instance log
that reports two respective related events with the same order. Particularly, if the execution of one activity
depends directly on the termination of another activity then the event related to the first activity must
directly (immediately, without intercalated events between them) follow at least once the event related to the
second activity in an instance log. For instance, in our motivating example (see Figure 1) the execution of
CCA directly depends on the termination of CRS. Thereafter, in order to be complete the related workflow
log should contain an EventStream where CCA directly follows CRS (as shown in the 5! EventStream
above).

— Condition 2: To discover the parallel behaviour of two concurrent activities where the activities’ begin and
end execution times is unknown, we require that the events of the two parallel activities should appear at
least in two EventStreams without order of precedence. Basically, two parallel activities must directly follow
each other in two instances in different order to indicate that each activity can finish its execution before
the other. For instance, in our motivating example (see Figure 1) CIC and CCA are two parallel activities.
Thereafter, the related workflow log should contain two EventStreams where CIC follows CCA in the first
one, and CCA follows CIC in the second one (as shown in the 5" and 7" EventStreams).

Table 2 represents the execution of six instances of our running example (see Figure 1) without any activity
failures. This table contains the sufficient information which we assume to be present to mine the associated
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control flow. Indeed, our motivating example contains conditional behavior between three activities (CH, SH,
and CC), which implies three EventStreams according to the first condition. Additionnaly, the two concurrent
flows, containing respectively CIC, CCA, and PL imply two additional EventStreams by applying the second
point. The parallel behavior that can be observed between CC and SH if the user decides to pay using credit
card and cash implies one additional EventStreams. The total of sufficient EventStreams equals 3+2+1 = 6,
shown in Table 2. In this table, the EventStreams 1 and 4 describe the case where a user pays by cash. Although
these different EventStreams (1 and 4) describe the same scenario, the concurrent activities execution differs
(i.e CIC, CCA, and PL). These different EventStreams (in the same way for the EventStreams 5 and 6) allow
one to describe the various possible choices of the processing as well as the various possible combinations of
concurrent activities” execution in these choices.

Table 1 Six EventStreams of our motivating example

Instance ID EventStream
Instancel (CRS,t) (CCA,t) (PL,t) (CIC,t) (CA,t) (SH,t) (SB,t)
Instance2 (CRS,t) (CCA,t) (PL,t) (CIC,t) (CA,t) (CH,¢) (SB,t)
Instance3 (CRS,t) (CCA,t) (PL,t) (CIC,t) (CA,t) (CC,t) (SB.,t)
Instance4 (CRS,t) (CCA,b) (CIC,t) (PL,t) (CA,t) (SH,t) (SB,b)

Instance5 (CRS,1t) (CIC,t) (CCA,t) (PL,1) (CA,1) (CH,t) (SH,t) (SB,t)
Instance6 (CRS,t) (CIC,t) (CCA,t) (PL,t) (CA,t) (SH,t) (CH,t) (SB,t)

In this section, we have focused on defining a meta model for the workflow log structure by presenting an
independent log format which is compatible with the majority of WfMSs collected logs. This format is used as
the single and only input for our workflow mining approach that we detail in the following sections. As a matter
of principle, any system which collects events related to the execution of its activities can use this independent
format to store and exchange its logs. The intention of this format is to reduce log processing efforts and to
provide support for other workflow discovery tools. Besides, it is simple to translate into the MXML format
suggested and used by many of the current workflow mining tool [37]. We note that more details about log
completeness conditions can be found in our previous work [38] where we defined and proved the sufficient
and minimal number of workflow instances to achieve these log completeness conditions.

4 Workflow log statistical analysis

Attie et al. [39] discuss how workflows can be represented as a set of dependencies. The activities in a workflow
are described in terms of significant event dependencies. The aim of this section is to detail our log statistical
analysis for discovering event dependencies among workflow activities and build an intermediary model that
represents these dependencies: the statistical dependency tables (SDT).

4.1 Statistical dependency table

We propose to build Statistical Dependency Tables (SDT) reporting log elementary event dependencies by
statistically analysing the WorkflowLog. An elementary event dependency is a relation linking an Event e; to an-
other Event e; which expresses that there is an EventStream where the event e; precedes directly the occurrence
of the event e;. These tables, which are based on frequency tables [40], report for each event a the following
information: (i) the overall frequency of this event (denoted #a) and (ii) the causal dependencies to previous
events b; (denoted SDT (a, b;)). The size of SDT is N*N, where N is the number of workflow events. The (m,n)
table entry is the frequency of the n* event immediately preceding the m*" event (see algorithm 1).

Table 2 represents fragments of the SDT of our motivating workflow example concerning only non-failed
workflow instances (i.e. instances containing failed activities are discarded from this table). For instance, in
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Algorithm 1 Computing initial SDT

: procedure COMPUTINGSDT(W ork flow Log)

. input: WorkflowLog: WorkflowLog

output: #: event occurrence table ; SDT" Statistical dependency table;

: Variable: streamg;,.: int; SDTg;,¢: int;

: #: int[]; depFreq: int[][]; > initialized to O;

for every stream: EventStream in WorkflowLog do
streamg; e = stream.size(); > size returns the number of events in a stream
9: for int i=1; 7 < streamyg;e; i++; do
10: #[stream.get(i)]++; > get returns the event whose index is i
11: depFreq[stream.get(i)][stream.get(i-1)]++;
12: end for
13: end for
14: SDTy; e = Size-tab(#); [*return the size of #*/
15: for int j=0; j < SDTsjze; j++; do

A L AT

16: for intk=0; k < SDTg;,¢; k++; do
17: SDTj, k] = depFreq[jl[Kk]/ #[j1;
18: end for

19: end for

20: end procedure

this table SDT((SB,t), (SH,t))=0.22 expresses that if the event (SB, t) occurs then we have a 22% chance
that the event (SH, t) occurs directly before the event (SB, t) in the workflow logs.

Table 2 Fractions of initial SDT

SCT((x,y) | CRS,t | CIC,t | CCA,t | PLit | CAt | CCt | CHt | SH,t | SB,t
CRS,t 0 0 0 0 0 0 0 0 0
CIC.t 0.46 0 0.33 0.21 0 0 0 0 0
CCAt 0.54 0.46 0 0 0 0 0 0 0

PL,t 0 0.33 0.67 0 0 0 0 0 0
CAt 0 0.21 0 0.79 0 0 0 0 0
CC,t 0 0 0 0 1 0 0 0 0
CH,t 0 0 0 0 1 0 0 0 0
SH,t 0 0 0 0 1 0 0 0 0
SB.t 0 0 0 0 0 043 | 035 | 0.22 0

#CRS,t = #CIC,t = #CCA, L = #PL,t = #CA,t = #5B, = 100
#CO,t = A3#CH,t = 354SH,t = 22

We demonstrated a correlation between the workflow dependencies and the log statistical dependencies
expressed in SDT (Theorem 1). This theorem expresses that a relation of equivalence between activity depen-

dencies and positive entries in SDT: an activity “a” immediately precedes ¢ another activity “b” if and only if
SDT reports a zero value between the successive events and a positive value in the opposite entry.

Proof (Proof of Theorem 1:)
Proving first right implication ="

Let L be the WorkflowLog capturing the execution of a and b. By applying Condition 1 of the log complete-
ness conditions specified in section 3 we can deduce that:

6 i.e. the only process model elements between activities “a” and “b” are gateways, meaning that there is no path in the process

model between “a” and “b” that contains another activity
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Theorem 1 (Correlation between SDT and activity dependencies)
Let w ft be a workflow whose control flow is composed using the set of 7 described patterns (sequence, AND-split, OR-split, XOR-
split, AND-join, OR-join, XOR-join and m-out-of-n) and does not contain short loop spanning only two activities. Va, b € w ft

a immediately precedes b < SDT((b,t), (a,t)) > 0 A SDT((a,t),(b,t)) =0

Joy1 = titots...tp—1 € LA < i < n,|t; = (a,t),tip1 = (b,t)
Using the SDT building definition and the preceding instance log, we can deduce that:
a<b"= SDT((b,t),(a,t))
Let us suppose now (proof by contradiction) that SDT((a, t), (b,t)) > 0. This implies:
Jo1 = titotz...tyn_1 € LAT0 < i< n,lt; = (b,t),tiy1 = (a,t)
and SDT((b,t), (a,t)) > 0 implies:
Jo1 = titotz...ty_1 € LAT0 < i< n,lt; = (a,t),tis1 = (b,t)

However, this case only applies if we have a short loop (By applying Condition 1 of the log completeness
conditions), or a and b are concurrent activities (By applying Condition 2 of the log completeness conditions).
Thus we have:

a < b= SDT((b,1),(a,t)) > 0 A SDT((a,t), (b,t)) =0

Proving second left implication ”<=" (proof by contradiction)
We have SDT((b,t), (a,t)) > 0 A SDT((a,t), (b,t)) = 0, thus based on the SDT building definition we
can deduce:

(1) Jo1 = tytats...tp—1 € LAT0 <i < n,l|t; = (a,t),tir1 = (b, 1)
/\390’1 = tyitats...tu—1 € LAI0 < i < n,|t; = (bt), tix1 = (a,t)

Since a and b belong to the set of the 7 described patterns, two sub cases happen if we suppose that they
are causally independent:

1. The two activities a and b belong to two different separate patterns. However, this is impossible because
our instance log (1) shows that the two activities happen one after the other.

2. The two activities a and b are concurrent. This is impossible based on instance log (1) and the Condition 2
of the log completeness conditions.

Thus a precedes b. Indeed, the case b precedes a is trivially meaningless by applying ”=>". In conclusion,
we have:

a<b< SDT((b,t),(a,t)) >0ASDT((a,t),(b,t)) =0

As shown this “initial” SDT has problems to “correctly” and “completely” express event dependencies
related to the concurrent and the conditional behaviour. Indeed, these entries are not able to identify the condi-
tional behaviour and to report the concurrent behaviour pertinently. In the following, we detail these problems
and we propose solutions to correct and complete these statistics.

7 @ immediately precedes b
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4.2 Discarding erroneous dependencies

If we assume that each EventStream from a WorkflowLog stems from a sequential (i.e no concurrent behaviour)
workflow, a zero entry in SDT represents a causal independence and a non-zero entry a causal dependency (i.e.
sequential or conditional dependency). However, in case of concurrent behaviour EventStreams may contain
interleaved event sequences from concurrent threads. As a consequence, some entries in a SDT can indicate
non-zero entries that do not correspond to dependencies. For example, the 5" EventStream given in section 3
erroneously “suggests” causal dependencies between (CCA and CIC), and (CIC and PL). Indeed, CIC comes
just after CCA and CIC comes immediately before PL in this EventStream. These erroneous entries are reported
by SDT((CIC, t), (CCA, t)) and SDT((PL, t), (CIC, t)) in the initial SDT which are different to zero. These
entries are erroneous because there are no causal dependencies between these events as the initial SDT suggests.
Bold values in Table 2 report this behaviour for other similar cases.

Formally, based on condition 2 of the log completeness conditions, we can easily deduce that two activities
A and B are in concurrence iff SDT((A, t), (B, t)) and SDT((B, t), (A, t)) entries in SDT are non-zero entries
in SDT. Based on this, we propose an algorithm to discover activity parallelism and then mark the erroneous
entries in SDT. Through this marking, we can eliminate the confusion caused by the concurrent behaviour pro-
ducing these erroneous non-zero entries. The algorithm 2 scans the initial SDT and marks concurrent activities
dependencies by changing their values to (—1). For instance, we can deduce from Table 2 that CIC and CCA
activities are in concurrence (i.e SDT((CCA,t),(CIC,t)) # 0 A SDT((CIC,t),(CCA,t)) # 0). After ap-
plying our algorithm, the entries SDT((CCA, t), (CIC, t)) and SDT((CIC, t), (CCA, t)) are changed to —1. The
algorithm’s output is an intermediary table that we call marked SDT (MSDT).

Algorithm 2 Marking concurrent activities in SDT

1: procedure MARKINGSDT(SDT, MSDT)

2: input: S DT Statistical dependency table

3: output: M SDT Marked Statistical dependency table
4: Variable: M SDTg;,.: int;

5:

6: MSDT = SDT;

7: MSDTyg;,. = Size-tab(M SDT); > calculates MSDT size
8: for int i=0; i< M SDTs;.c; i++; do

9: for int j=0; j<i; j++; do
10: if SDTVi][j]1 > 0 A SDTYj][i]>0 then
11: MSDTIi][j] = -1;
12: MSDT(j][i] = -1;
13: end if
14: end for
15: end for

16: end procedure

4.3 Discovering indirect dependencies

An activity might not depend on its immediate predecessor in the EventStream, but it might depend on another
“indirectly” preceding activities. As an example of this behaviour, CIC is logged between CCA and PL in the
5" EventStream given in section 3. As a consequence, CCA does not occur always immediately before PL in
the workflow log. Thus we will have SDT((PL,t), (CCA,t))) < 1 which is under-evaluated. In fact, the right
value is 1 because the execution of PL depends exclusively on CCA. Similarly, underlined values in Table 3
report this behaviour for other cases.

To discover these indirect dependencies, we introduce the notion of a concurrent window (Definition 2) that
defines a set of contiguous Event intervals over an EventStream. A concurrent window is related to the activity
(the reference activity) of its last event (ActID) covering its causal preceding activities. Using this window,
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Definition 2 (Concurrent window)

Formally, a concurrent window defines an uplet window(wLog, ActID) as a continuous log slide (interval) over an EventStream
S(sLog, SOcc) where wLog C sLog and ActID is the last event in this log slide.

We define the function width(window) which returns the number of activities in the window.

we do not only consider the immediate previous event for a concurrent activity but also the previous events
covered by the interval. For instance, in our motivating example (see Figure 1) PL and CIC are two parallel
activities. Due to this concurrent behaviour, CCA does not occur always immediately before PL in workflow
log because CIC can be logged between PL and CCA. Therefore, the concurrent window of PL, as shown in
Figure 6, covers CCA in addition to CIC. Thus, thanks to PL’s concurrent window CCA will be considered as
a preceding activity of PL when SDT will be computed using the concurrent window correction.

Initially, the width of the concurrent window of an activity is equal to 2. Each time the activity is in
concurrence with another activity we add 1 to this width. If this activity is not in concurrence with other
activities and has preceding concurrent activities, then we add their number to the concurrent window’s width.
For example, CIC is only in concurrence with PL, so the width of its concurrent window is equal to 3 = 2 + 1.
Based on this, the algorithm 3 computes the concurrent window of each activity grouped in the concurrent
window table. This algorithm scans the “marked” SDT calculated in the last section and updates the concurrent
window table consequently.

Algorithm 3 Calculating concurrent window size

1: procedure WINDOWWIDTH(M SDT, ACWT)
2: input: M SDT: Marked Statistical dependency table
3: output: ACWT: CW size table
4: Variable: M SDTy;,.: int;
5:
6: MSDTs;,e = Size-tab(M SDT); > calculates MSDT size
7. for int i=0; i< M SDTs;,e; i++; do
8: ACWTI[i]=2;
9: end for
10: for int i=0; i< M SDTs;c; i++; do
11: for int j=0; j < M SDTyj e; j++; do
12: if MSDTTi][j] ==-1 then
13: ACWTI[i]++;
14: end if
15: for int k=0; k< M SDTg;c; k++; do
16: if MSDTIk][i] >0 then
17: ACWTIKk]++;
18: end if
19: end for
20: end for
21: end for

22: end procedure

After that, we proceed through an EventStream partition that builds a set of partially overlapping windows
over the EventStreams using the concurrent window table computed in algorithm 3. In an EventStream partition,
each window shares the set of its elements with the preceding window except from the last event which contains
the reference activity of the window (ActID in Definition 2). In Figure 6 we have applied a partition over the
EventStream of the running example presented in the 5 EventStream in section 3. For example, the size of
the concurrent window of CA is equal to 3 because this activity has two concurrent activities PL and CIC that
precede it. We note that for each activity in this EventStream its concurrent window enables it to cover only its
causal preceding activities.

Finally, Algorithm 4 computes a new “corrected” SDT (final SDT). This algorithm takes as input the
workflow log (Wlog). The function (partition(Wlog)) builds a set of partially overlapping windows over the
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Figure 6 EventStream partition
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EventStreams of Wlog using the concurrent window table computed in algorithm 3. Then, for each concurrent
window (fwin), it computes for its reference (last) activity (Syc ference) the frequencies of its preceding activ-
ities (Spreceding)- Using MSDT table, only activities dealing with the concurrent behavior are updated in the
initial SDT. Eventually, the final SDT is calculated by dividing each row entry by the frequency of the row’s
activity.

Algorithm 4 Calculating final SDT

1: procedure FINALSDT(Wlog, #, M SDT)
2: input: Wlog: WorkflowLog, #: event Frequencies Table; M S DT": Marked Statistical Dependency Table;
3: output: C'SDT:Corrected Statistical Dependency Table
4: Variable: Sy erence: int; Spreceding: int; fWin: window; depFreq: int[][]; freq: int;
S:
6: MSDTs;,e = Size-tab(M SDT); > returns MSDT size
7 for all win:window in partition(Wlog) do
8: Sreference = last-activity(win); > returns the last activity’s event
9: fwin = preceding-events(win); > returns “win” without the last event
10: for all e:event in fwin.wLog do
11: Spreceding= €.activityld;
12: ifMSDT[S'refe'renCEs Spraceding]>o then
13: depFreq[Sreferencev Spreceding]‘H';
14: end if
15: end for
16: end for
17: forint ;.. ;=0; t,cf < MSDTs;ze; trep++; do
18: for int t=0; tpr < MSDTys;zc; tpr++ do
19: CSDTltrey, tprl=depFreqltrey, tprl#trey;
20: end for
21: end for

22: end procedure

Now by applying these algorithms, we can compute the corrected SDT (Table 3) which will be used in
the next section to discover the workflow patterns. Note that, our approach dynamically adjusts, through the
width of concurrent window, the process of calculating the events’ dependencies. Indeed, this width is tightly
related to the concurrent behaviour: it increases in case of a concurrence and remains “neutral” (equal to 2) in
case of a concurrent behaviour absence. Thus, our algorithm adapts its behaviour to the “concurrent” context.
This strategy allows the improvement of the algorithm’s complexity and runtime execution compared to an
analog patterns discovery algorithm [41] which uses an invariable concurrent window width. Indeed, the use
of an invariable width could apply a width superior to 2 for non-concurrent activities or a non optimal width
and then involve unnecessary computations increasing the algorithm’s complexity.
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5 Transactional workflow mining

In the following, we describe a set of techniques and algorithms for transactional workflow mining based
on log statistics analysis. We proceed in three steps by discovering: (i) the workflow patterns composing the
control flow (section 5.1), the transactional flow (section 5.3.1) and the transactional properties (section 5.3.2)
including the recovery mechanisms.

Table 3 Final SDT (SCfT) and activity Frequencies (#)

SCIT((x,y) | CRS,t | CIC,t | CCA,t | PLit | CAt | CCt | CH,t | SH,t | SB,t
CRS,t 0 0 0 0 0 0 0 0 0
CIC,t 1 0 -1 -1 0 0 0 0 0
CCAt 1 -1 0 0 0 0 0 0 0

PL,t 0 -1 1 0 0 0 0 0 0
CALt 0 1 0 1 0 0 0 0 0
CC,t 0 0 0 0 1 0 0 0 0
CH,t 0 0 0 0 1 0 0 0 0
SH,t 0 0 0 0 1 0 0 0 0
SB,t 0 0 0 0 0 0.43 0.35 0.22 0

#CRS,t = #CIC,t = #CCA,t = #PL,t = #CA, L = #5B,¢ = 100
#CC,t = 43#CH, t = 35#SH, t = 22

5.1 Mining workflow patterns

In this section we focus on discovering “elementary” routing workflow patterns: Sequence, AND-split, OR-split,
XOR-split, AND-join, OR-join, and M-out-of-N patterns composing the control flow. As we have mentioned,
these patterns describe the control flow interactions for activities executed without “exceptions” (i.e. they suc-
cessfully reach their terminated state). Thus, there is no need to use the event dependencies relating to (failed
or cancelled) states which concern only workflow transactional behaviour. As such we can filter the workflow
logs and only consider EventStreams executed without failures or cancellations. Thus, the minimal condition
to discover workflow patterns is a workflow log containing at least the terminated event state. Thus, we build
a control flow SDT (noted SCfT) that captures only event dependencies with a terminated state in successful
executions (Table 3). Therefore we do not differentiate between activity dependencies and event dependencies
(i.e. we do not need to capture event states as we are only interested in terminated states).

The identification of workflow patterns is archived through a set of rules. Each pattern has its own fea-
tures which statistically abstract its causal dependencies, and represent its unique identifier. These rules allow
to discover the set of workflow patterns included in the mined workflow. Our control flow mining rules are
characterized by a “local” workflow mining approach. Indeed, these rules proceed through a local log analysis
that allows us to recover partial results of mining workflow patterns. To discover a particular workflow pattern
we only need Events related to the activities of this pattern. Thus, even using only fractions of workflow logs,
we can correctly discover the corresponding workflow patterns.

5.1.1 Discovering sequence pattern

In this category, we discover sequence patterns (Table 4). In this pattern the enactment of the activity b depends
only on the completion of the activity a which implies only the enactment of b.

For instance, by applying the rules of this pattern over SCfT (i.e. Table 3), we discover a sequence
pattern linking CCA and PL. Indeed, (#CCA = #PL) and (SCfT(PL,CCA) = 1) and VA <;<, #
CCA;SCfT(PL,A;) <0and VA <<, # PL; SCfT(A;,CCA) <0.
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Table 4 Mining rules of sequence workflow pattern

Pattern rules
sequence | (#b= #a) N (SCfT(b,a) =1) A (Ve # a; SCfT(b,c) < 0) A (Vd #b;SCfT(d,a) <0)

5.1.2 Discovering split patterns

Table 5 Mining rules of split workflow patterns

Pattern rules
XOR-split | (57, FEb)=Fa) A (V1 < i < n; SCFT (b, a) = DA (1 < 4,5 < n; SCFT(b;, b;) = 0)
AND-split | (V1 <@ < n;#bi=#a) A (V1 <7 <n; SCfT(b;,a) = 1A VI <i#j <nSCfT(b;,b;) = —1)
ORsolir | FOS T GO A (VIS TS i #0; < #a) (VIS 1< SOJT(b,a) = DAL i £ j < m;
P | SCsTbiby) = ~1)

This category (see Figure 3) is characterised by “fork” operator where a single thread of control splits
into multiple threads of control which can be, according to the used pattern, executed or not. To identify
the three patterns of this category: XOR-split pattern, AND-split pattern and OR-split pattern, we have analysed
dependencies between the activities a and b; before and after the “fork” operator (see Table 5). The three
patterns share the causality between activities a and b;; that means (V1 < i < n; SCfT(b;,a) = 1). In the
xor-split pattern, the non concurrent behaviour between b; is identified by the statistical property (V1 < 4,j <
n; SCfT'(b;,b;) = 0). The difference between the or-split and the and-split patterns is the frequency relation
between activities a and b; . Effectively, in the or-split pattern only a part of these activities are executed after the
“fork” point. However, all the b; activities are executed in the and-split pattern. For instance, using Table 3 we
mine that an AND-split pattern links CRS, CCA and CIC. In fact, the SCfT’s entries of these activities indicate
a concurrent behaviour between CCA and CIC (SCfT(CCA,CIC) = SCfT(CIC,CCA) =-1), and CCA
and CIC executions depend on the termination of CRS (SC fT(CCA,CRS) = SCfT(CIC,CRS) =1).

5.1.3 Discovering join patterns

This category (see Figure 3) has a “join” operator where multiple threads of control merge in a single thread of
control. The number of necessary branches for the activation of the activity b after the “join” operator depends
on the used pattern. To identify the three patterns of this category: xor-join pattern, and-join pattern and M-out-
of-N-Join pattern, we have analysed dependencies between the activities a; and b before and after the “join”
operator (see Table 6). The three patterns differ in the number of necessary branches to activate b. The and-join
pattern requires the execution of all the a; activities; which can be identified by (V1 < i < n; SCfT(b,a;) = 1).
The M-out-of-N-Join pattern supports a “partial” parallelism between a; activities; that means (31 < i,j < n;
SCfT(a;,a;) = —1). Finally, the non concurrent behaviour between a; in the xor-join pattern can be catched by
((V1 <4, <n; SCfT(a;,a;) = 0)). For instance, using Table 3 we mine an xor-join pattern linking CC, CH,
SH and SB. In fact, the FSDT’s entries of these activities indicate a non concurrent behaviour between CC, CH,
and SH (SCfT(CH,SH)=SCfT(SH,CH)=SCfT(SH,CC) # -1) and the execution of SB depends on the
termination of CC, CH, and SH: (SC fT'(SB,CC)+SCfT(SB,CH)+SC fT(SB,SH)=1). We notice here
that the payment by cash and check is never combined. Indeed, those two activities are never executed together
(SCfT(CH,SH) # -1). Keeping this payment facilities can be costly. This new discovered behaviour should
be used in the re-engineering phase by advising the designers to modify the concurrent behaviour linking the
activities CH and SH (see green flows in Figure 8).
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Table 6 Mining rules of join workflow patterns

Pattern rules

XOR-join (X7, (FFay)=#b) A (X7 SCIT(b,a;)=)) A(V1 < i # j <n; SCfT(a;,a;) =0)

AND-join V1 <i < n;#a=#b) A (V1 <i <n; SCfT(b,a;) =1)A V1 <i#j <nSCfT(a;,a;) =—1)
M-out-of-N (m=*#b < Ef:i(#ai)) ANVI<i<n;#Fa; <F) M X SCfT(b,a;) <n)AN@1<i#j<n;
SC’fT(ai,aj) = —1)

5.2 Coherent composition of the discovered patterns

The construction of the discovered workflow is made by linking the discovered patterns one by one. Indeed,
in our approach we define the control flow as a union of patterns. We use rewriting rules (illustrated in Table
7) to bind the discovered patterns (terminals). We consider a workflow as a word that has patterns as terminals
(laterals). These terminals can be associative and commutative in the word constituting the discovered workflow
when applying the rewriting rules.

Table 7 Rewriting rules defining a coherent pattern composition grammar

RRI1: sequence(a,b).{p;} — A(a,b).{p;}

RR2: AND-split(a,bi,ba, ..., bn),{pi} — B(a,b1,b2,...,bn).{p:}

RR3: OR-split(a, b1, b2, ..., bn ), {p;} — C(a,b1,b2, ..., bn).{p:}

RR4: XOR-split(a, b1, b2, ...,bn).{p:} — D(a,b1,ba,....,bn).{pi}

RR5: AND-join(a1, a2, ..., an,b).{pi} — &€(a1, a2, ...,an,b).{pi}

RR6: M-out-of-N(a1, a2, ...,an,b).{p;} — F{a1,a2,...,an,b).{p:}

RR7: XOR-join(ai,az2,...,an,b),{p:} — G(a1,az,...,an,b),{pi}

RRS: A(a,0), A(b,c).{pr} — Ala, o) {p:}

RR9: A(z,a), Fsn(a,bi,ba,...,bn), {pi} — Fsn(x,b1,ba,....;bn).{pi}

RR10: Fsn(a,bi,...,bn), A(bi,z), {pi} — Fsn(ao,b1,...,bi—1,%,bit1,...,bn).{pi}
RRI1: A(z,a;), Int(ai,...,an,b), {p;i} — Int(ar,...,ai—1, 2, @it1,...,an,b).{p:i}
RRI12: JInt(ai,az,...,an,b), A(b, z), {p;} — TInt(a1,a2,...,an,z){pi}

RR13: B(a,bi,ba,...,bpn), E(b1,b2, ..., bn,c), {pi} — Ala,c), {pi}

RR14: C(a,b1,b2,...;bn), F(b1,b2,...,bn,c), {pi} — A(a,c), {p:}

RR15: D(a,b1,ba,....;bn), G(b1,b2,....bn, ), {pi} — A(a,c), {pi}

RR16: A(a,b), e — Work flow

{pi} remaining terminal set
Fsn=BVCVD
Jnt=EVFVG

Discovering a pattern-oriented model ensures a sound and well-formed mined workflow model. By using
such as model we are sure that the discovered workflow model does not contain any deadlocks or other flow
anomalies. Indeed, this set of rules allows to discover a coherent and well-formed pattern-oriented workflow
model. Consequently, by using these rewriting rules we are sure that the discovered patterns do not contain any
incoherent flow. In fact, in order to have meaningful unions (disjoined patterns) or incoherent flows (deadlocks,
liveness, etc.), this grammar does not allow, for instance, the combination of XOR-split and AND-join patterns
which implies a deadlock or a combination of AND-split and XOR-join which can induce a meaningless union
where some executed flows are unneeded. The grammar of the rewriting rules defines a language of coherent
unions that reduces the discovered patterns to the final word Work flow. Concretely, rules RR1 to RR7 rewrite
the discovered in federated expressions that are reduced thereafter in rules RR8 to RR16 in the final word
Work flow. Thus, a discovered control flow is coherent iff the union of the corresponding discovered patterns
is a word generated by this grammar. Concretely this grammar, which was specified for the set of the seven
studied patterns, postulates that:

— A control flow should start with one of these patterns: sequence, AND-split, OR-split or XOR-split (rewrit-
ing rules RR8, RR13, RR14, RR15, RR16).



19

— All patterns can be followed or preceded by the sequence pattern (rewriting rules RR8, RR9, RR10, RR11,
RR12).

— An AND-split pattern should be followed by one of these patterns: AND-join or sequence (rewriting rules
RR10, RR13).

— An OR-split pattern should be followed by one of these patterns M-out-of-N or sequence (rewriting rules
RR10, RR14).

— An XOR-split pattern should be followed by an XOR-join pattern or a sequence pattern (rewriting rules
RR10, RR15).

By applying the rules (Tables 4, 5 and 6) over SCfT table (Table 3) we discovered the workflow illustrated
in Figure 8. We built the control flow as a pattern composition over this pattern word:
and-split(CRS,CIC,CCA), sequence(CCA,PL), and-join(CIC,PL,CA), xor-split(CA,CH,SH,CC), xor-join(CH,SH,CC,SB).
Concretely by applying the rewriting rules (Table 7) to this word, we can combine these discovered patterns,
by binding them in a coherent structure to rebuild and analyze the coherence of our discovered workflow:
and-split(CRS,CIC,CCA), sequence(CCA,PL), and-join(CIC,PL,CA), xor-split(CA,CH,SH,CC), xor-join(CH,SH,CC,SB).
— RRI1,RR2,RR3,RR4,RR5,RR6,RR7 B(CRS,CIC,CC), D(CIC,PL,CA), G(CA,CH,SH,CC), A(CCA,PL), £(CH,SH,CC,SB)
— rr11 B(CRS,CIC,PL), D(CIC,PL,CA), G(CA,CH,SH,CC), £(CH,SH,CC,SB) — rRr15 B(CRS,CIC,PL),
D(CIC,PL,CA), A(CA,SB)— RrR13 A(CRS,CA), A(CA,SB)— rrs A(CRS,SB) — rRr16 Work flow

5.3 Mining transactional behaviour
5.3.1 Mining transactional flow

Similar to the discovery of workflow patterns we build statistical transactional dependency tables (STrD). How-
ever, these tables report only event dependencies captured after activity failures. These dependencies allow us
to specify and reason about the workflow transactional behaviour expressed in terms of transactional proper-
ties and transactional flow. To calculate these dependencies we use the same definition, except that we capture
only event dependencies after activity failures. In practical terms, each STrD is related to an activity “act” and
statistically captures statistically workflow behaviour after “act” fails. IT Rq¢t is a STrD, built to capture trans-
actional inter-activity dependencies after the failure of “act” (see definition 3). We note that act’s dependencies
before the failure are not reported in IT Rg.ct.

Definition 3 (Inter-activity transactional dependency table)

We denote by IT R+ the inter-activity transactional dependency table that reports event dependencies after the failures of “act” .
Let eqct be the failure event of “act” (i.e. eqct.activity = act A eqct.state=f), each entry in IT Rqct (€1, e2) is an event dependency
where :

- (e1=€qct Vez=eqct) V
— JEwt : Event| ((Evt=e1 V Evt=e2) A eqct < Evt);

To build I'T Ract, we only use logs where “act” fails, keeping only the event dependencies after its failure.
The dependencies located before “act” fails report the control flow. We distinguish two types of inter-activities
transactional dependencies in IT Rqq: (see definition 3). The first category reports the event dependencies
where we can find the failed event of “act” (e.state= f A e.activity = act). The second category reports any
dependency where there is an activity executed after the failure of “act”. In this set of activities, we can find
activities which are not in the discovered control flow. Indeed, the recovery mechanisms can require “new”
compensation activities which semantically undo “act”’s failure side-effects. Table 8.a represents a fraction of
IT R 4 of our motivating workflow example after CA fails.

Table 9 describes the statistical log rules to discover the alternative dependencies related to an activity
A; using ITR 4,. These dependencies are deduced if we observe a positive entry between the event reporting
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Table 8 Fractions of Statistical Transactional Dependency tables of C' A

(a) ITRc A table (b)AT R 4 tables

ATREIC [t [f[a

ITRca | CAf | DBCt | CICt | CCAt | PLt t 11010
CAf 0 0 0 1 1 f 0JOJOATREL [t [f]a
DBC,t 1 0 0 0 0 c 0]0]0 t 1170]0
CIC,t 0 1 ATRggA t | f[ a f 0|00
CCAt 0 1 t 11070 ¢ 0]0]|O0

PL,t 0 0 f olo] o

c 0]0]0

t=terminated, f=failed, c=cancelled ]

the failure of A; and the event reporting the execution of A; in ITR4,. According to the localisation of A;
we identify two types of alternative dependencies: a forward (respectively backward) alternative if A; is after
(respectively before) A; in the discovered control flow. If A; is not in the discovered control flow then we
mine an alternative forward (respectively backward) if there is an activity Ay, in the control flow such that A;
is executed before Ay, in ITR 4, and Ay, is after (respectively before) A; in the control flow. For instance in
our motivating example (see Figure 1), we can deduce from Table 8.a that we have a backward alternative
dependency from CA to DBC (ITRca ((DBC, t), (CA, f)) =1 A ITRc4 (CIC, t), (DBC,t)) =1 A
SCfT(CA, CIC) > 0). Besides, we can observe the execution of a “new” compensation activity (i.e, DBC)
which does not exist in the discovered control flow.

Table 9 Statistical log properties of inter-activity transactional dependencies

Dependencies Rules
ITRa,; (A}, 1), (A;, D) #0
depAlt(Ai, A7) | _ Backward: SCFT(As, A;) > 0V 34| SCFT(As, Ag) > OA ITRa; ((Ag. ), (A7, H)> 0
— Forward: SC’fT(Aj7 Al) >0V E|Ak| SCfT(Ak, Al) > 0N ITR4; ((Ak, t), (Aj, >0
deanl(A,-, A]') ITRAi ((Aj, c), (A;, )>0

Table 9 describes statistical log features that specify the rules to discover the cancellation dependencies of
an activity A; based on ITR 4,. These dependencies are deduced if we observe a positive entry between the
event reporting the failure of A; and the event reporting the cancellation of A; in ITR 4,.

5.3.2 Mining activity transactional properties

Transactional properties are discovered through the intra-activity transactional dependency table AT R (c.f.
definition 4). Indeed, if an activity “act” fails, a table ATRaACt is built for each activity “A” executed after the
failure of “act” to capture the internal state dependencies between the events of “A”. Thus, AT Rt extracts
from instances logs where the failure of “act” is observed the dependencies between the internal events of
act’s following activities. Table 8.b captures the intra-activities transactional dependencies of CIC, CCA and
PL after the failure of CA.

An activity a is retriable (a”) if it always finishes successfully after a finite number of activations. Table
10 describes the statistical log rules to discover the retriable transactional property of a based on IT R,,. This
property is mined if we observe an entry in AT Rg equal to 1 between the event reporting the state failed of a
and the event reporting the state terminated of a and we also observe in IT R, an entry equal to 1 between the
events failed and terminated of a.

An activity a is pivot (a) if it cannot be re-executed once it terminates without failure, thus its execution
effects are persistent. Table 10 describes the statistical log rules to mine the transactional property pivot of
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Definition 4 (Intra-activities transactional dependency table)

We denote by ATR;‘Ct the Intra-activities transactional dependency table that reports “A”’s intra-event dependencies after “act”
failures. These dependencies are extracted from a workflow log projection taking only “A” events from instances related to act
failures. Let eqct be the failure event of “act” (i.e. eqct.activity = act A eqct.state= f), each entry in I'T Rqct (€1, e2) is an event
dependency where :

— (ey.activity = A A eg.activity = A) A
— JEwt : Event| Evt.activity = A A eqet < Evt;

Table 10 Statistical log properties of intra-activities transactional dependencies

properties rules
a’ ATRg, (t, /)=l ANITRqr (a7, 1), (a". /) = 1
aP Aact|( act # aP N ATRgzt(“x”, t) ZOA(“x"=tV “x"=fV “x"=0))

a based on AT'R®. This property is mined if we do not observe any AT R® tables reporting a positive entry
between a’s terminated state and a’s terminated, failed or cancelled state.

By using these statistical specifications we can discover the activity’s transactional properties from StrD
tables. For instance, we can deduce from Table 8.b that the CIC, CCA and PL activities are not pivot. Indeed,
these activities are re-executed after reaching a terminated state when CA fails: (ATRgQC(t,t)z ATRgSA(t,t)=

PL oy
ATRq4(tH)=1).

6 Transactional behaviour re-engineering

[42] reports two important process validation questions: (1) “Does our model reflect what we actually do
?” and (2) “Do we follow our model?”. Within a business process re-engineering context, we address these
questions to propose a set of improvement and correction tools based on the process discovery results. We
are interested, in particular, on the correction and the improvement of the workflow transactional flow. In
some cases, a recovery mechanism initially designed and a-priori verified can generate execution errors due to
unpredictable external factors (e.g. failures in the execution engine or system). Using a-posteriori verification,
our work attempts to apply process log-based analysis to provide knowledge about discrepancies between the
initially designed process model and its execution instances. Such a verification is necessary and useful since
some interactions between process’ activities may be dynamically specified at runtime, causing unpredictable
interactions with other activities. Classical verification methods performed at design time are insufficient in
such cases, as they only take static aspects into account.

The rational of this a-posteriori verification approach is to compare the “effective” process discovered after
execution to the initially designed process to monitor whether it is coherent with the initial design and to detect
potential discrepancies that can express incoherences or potential “new” process evolution requirements. As
such, Delta Analysis (see Figure 7) is used to compare the real process, represented by the discovered workflow,
to the initially designed process. In a nutshell, at run time users can deviate from the initially designed workflow.
Delta Analysis between the initially designed and the discovered process allows us to monitor these deviations.
Indeed, a deviation can become a current practice rather than to be a rare exception.

Independently of the chosen comparison technique [43,44], a delta analysis process aims to detect the dis-
crepancies between the discovered and the initial models. These discrepancies can be exploited: (option 1) to
motivate the process users to be closer to the initially designed process if the discrepancies do not express a real
evolution or (option 2) to correct and improve the process model to be as close as possible to the “execution”
reality. In the following, we propose a set of rules to improve the transactional behaviour according to option 2.
These rules allow to correct or to remove, if necessary, any erroneous or omittable transactional behaviour and
thus to reduce the recovery efforts. By erroneous or impractical transactional behaviours, we mean initially de-
signed transactional flows which are not necessary or do not coincide with the execution. These transactional
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Figure 7 Delta analyse for workflow re-engineering
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behaviours can simply be expensive or a cause for additional errors. The correction and improvement rules
(section 6.2) depend on transactional consistency semantics (section 6.1). The transactional behaviour speci-
fications must respect these consistency rules linking the control to the transactional flow. These rules respect
the semantic relations between the transactional flow and the control flow.

6.1 Transactional consistency rules

The specification of a recovery mechanisms defined through the transactional behaviour should respect rules
which are partially dependent on the control flow to ensure reliable execution. Indeed, the recovery mechanisms
(defined by the transactional flow) depends on the process execution logic (defined by the control flow). For
example, regarding our motivating example (see Figure 1), it was possible to define CC as an alternative to CH
because (according to the XOR-split control flow operator) they are defined as exclusive branches. Similarly, it
was possible to define a cancellation dependency from CCA to CIC because (according to the AND-join control
flow operator) the failure of CCA requires the cancellation of any activity executed in parallel before recovering
the workflow execution.

Concretely, these consistency relations are inspired by [21] where “potential” transactional dependencies
of workflow patterns are specified and proven. They determine the set of impossible transactional flows and
then induce the set of “potential” transactional dependencies that can be defined according to a given pattern.
From this set the designer chooses the effective transactional behaviour of the pattern that will be implemented
and executed as the recovery mechanism in case of the failure of one of the pattern’s activities. In Rule 1, we
formally specify these relations. The first rule expresses the fact that a cancellation dependency can occur only
between concurrent activities; whereas the second rule specifies the localisation of the coherent point8 for some
patterns. The third rule specifies which activities should be recoverable. The last rule is a consequence of the
persistent feature of the pivot activity.

Rule 1 (Transactional consistency relations)

v'R1 : For the XOR-split, XOR-join and sequence patterns:

No cancellation dependency in these patterns;
v'R2 For the AND-join and the AND-split patterns:

No coherent point located in parallel activities;
v'R3 : Except parallel flow outside AND or XOR patterns compositions:

All activities should be recoverable in case of failure;
v'R4 :For the sequence, AND-split, XOR-split, OR-split, XOR-join:
No backward recovery for pivot activities.

For instance, we detail below how we can deduce the “potential” transactional behaviour for the AND-
Jjoin pattern by interpreting the above consistency rules. R2 can be considered for the AND-join pattern since

8 A coherent point c of an activity a is noted as the predicate Coh(a, c)
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this pattern does not consider alternatives. Indeed, R2 indicates that coherent points can be located in patterns
containing parallel flows where their activities are partially concurrent or not concurrent. So no alternative
dependency is allowed in the AND-join pattern as the the activities are concurrent. However, the failure of
any concurrent activity can cause the cancellation of those activities, according to RI. According to R3, all
component activities should be recoverable if this pattern is involved in an AND composition. While R4 only
allows forward alternative dependencies from failed activities in case one of them is pivot. These relations
are common and can be enriched to include other rules dependent on business semantics of the transactional
workflow model. Indeed, further transactional properties or transactional dependencies can be added which
consequently will restructure these semantic relations to integrate these modifications.

6.2 Correcting and improving the transactional behaviour

The correction rules (Rule 2) allow to remove the initially designed recovery mechanisms which are not in
the discovered workflow. These erroneous mechanisms can be expensive for the WEMS which should provide
the necessary means to support them. The transactional behaviour of the activity a at the initial design phase
is noted as ant. Activity ag.,, indicates the discovered transactional behaviour of a. While a¢, indicates the
corrected or improved transactional behaviour of a. The first three rules derived by relation R3 express that if
we discover that an activity never fails then any recovery mechanism initially designed (for instance, retriable
property, alternative or cancellation dependencies) is not necessary and should be removed. The last rule S4,
inspired by relation R/, indicates that cancellation dependencies can exist only between parallel activities.
If there is a cancellation dependency between two (ore more) activities and we discover that they are not
concurrent (e.g. these activities belong to the parallel flows of the M-out-of-N or OR-split patterns and we
discover that they are never executed concurrently) then this transactional behaviour should be suppressed.

Rule 2 (Suppressing omitable (extraneous) transactional behaviours)
vSI1:3ITR,,, Aal, = —al,;
V'82: HITRa,, A depAlt(ant,bnt) = ~depAlt(acr, ber)
V' §3: ingRadC A depCnl(ant, bnt) = —depCnl(acr,ber)
V'§4:SCfT(bge,aqc) > 0N depCnl(ant,bnt) = —depCnl(acr, ber)

For instance, we have discovered in section 5.1.3 that the payment by cash is never combined with the
payment by check. As such, CH and SH are never executed in parallel. Consequently, by applying S4 the
cancellation dependency between these activities, belonging to the recovery mechanism of CH, should be
removed. We also discover in our motivating example that CCA never fails. This implies a discrepancy between
the discovered model and the initially designed model. Then we can conclude: (i) that there is no need to
specify CCA as recoverable and thus, we suppress, by applying S, the alternative transactional dependency
between CCA and CRS; (ii) that there is no need to cancel CIC and thus, by applying S2, we suppress the
cancellation dependency between CCA and CIC. Figure 8 shows these corrections red crossed out on our
motivating example.

We also define rules proposing suggestions of recovery mechanisms for discovered failed activities without
an initially designed recovery mechanisms (Rule 3). However, not every failed activity does necessarily require
a recovery mechanism. The choice of specifying a recovery mechanism depends on a designers’ business
choice. However, we have to guarantee that if we discover that an initially designed activity can fail and induce
the instance failure then a recovery mechanism for this activity has to be defined to respect R3 in Rule 1.

Al.1,Al.2 and Al.3 suggest three different propositions specifying recovery mechanisms for a discovered
failed activity. Al.1 proposes to specify the retriable property as recovery mechanism if the activity is neu-
tral. A1.2 suggests a forward alternative dependency in case we have an activity representing a coherent point
located after the failed activity. A7.2 respects R2 that indicates that the coherent point should not be in concur-
rence with the failed activity. A/.3 suggests an alternative backward dependency in case we have an activity
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Figure 8 Correcting and improving transactional flow
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Rule 3 (Suggesting additional recovery mechanisms)
For each activity a, not initially recoverable but discovered to fail, we propose the following suggestions as recovery mechanisms:
VAILl:a"™ = al,
VAL2:Coh(a,b) N SCfT(bgc,aqe) > 0= depAlt(acr,ber)
VAL3: Coh(a,b) A SCFT(age,bae) > 0= depAlt(acr,ber) A bl
VA2: (SCfT(ade,bac) = —1) = depAnl(acr,ber)

representing a coherent point located before the failed activity. A/.3 respects R2 that indicates that there should
be no pivot activities between the coherent point and the failed activity. We note that the specification of the
coherent points and their localisations depends on the designer’s choices. Finally, A2, w.r.t to R/, suggests
cancellation dependencies from discovered failed activities to its concurrent activities.

For instance, if we discover in our workflow example the fact that CIC can fail, we can induce a discrepancy
between the discovered model and the initially designed model which indicates that CIC never fails. If the
designer considers that the failure of CIC has no side-effects on the continuation of the instance execution, we
can suggest: (i) by applying A1.2, a forward alternative recovery where the coherent point is located on CA. (ii)
otherwise by applying A/.3, we can suggest to specify a backward recovery to CRS, if the concurrent activities
CCA and PL are not pivot. Finally, by applying A2, we can suggest to specify cancellation dependencies
between CIC and (CCA and PL). Figure 8 shows these suggestions on our motivating example in bold green.
These suggestions could be entirely or partially applied w.r.t to a designer’s business choices.

As we have shown through this example, monitoring the “effective” transactional behaviour allows us to
detect design gaps and to improve the application reliability. Some deviations from the expected behaviour may
be highly desirable to detect process evolution and execution anomalies showing initially hardly foreseeable
process parameters, constraints and needs.

7 Validation

In this section we have developed a set of tools to validate our proposition for a reliable and correct workflow
execution by log analysis. First, in section 7.1, we present log collecting tools. Thereafter, we have imple-
mented (section 7.2) our mining workflow algorithms in a prototype that we have called Workflowminer [9],
and as a plug-in [45] within the ProM framework. Finally, we have developed (section 7.3) a workflow reengi-
neering tool based on the Event Calculus formalism to check, correct, and improve the workflow transactional
behaviour.
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7.1 Log collecting

In this section, we propose different means to validate the workflow log collecting issue. We have used two
complementary tools: collecting real execution logs and generating simulated logs. The first objective was
achieved by implementing an API which was grafted into a WfMS to collect log instances from already de-
signed and executed workflow processes. To satisfy the second objective, we have used CPN [46] Petri nets
simulation tools to generate simulated logs.

7.1.1 Real logs

In order to achieve the implementation of the first proposition, we have used Bonita as a workflow management
system support. Bonita [47] is a third generation cooperative WfMS, open source and downloadable under the
LGPL’ license. It enables to specify, execute, and control cooperative process. It provides a complete set of
integrated GUI tools to design, execute, and monitor workflow processes. It ensures user/system interaction
and includes also a navigator enabling to manage and to control the process execution in an interactive way.
Bonita is implemented using J2EE Enterprise Java Beans [48] that provide a flexible and portable environment.
Integrating transactional behaviour in Bonita was the subject of a work done recently in our research team
within the frame of an application to composite transactional web services. Using “transactional” plug-ins
[48], Bonita was extended to be able to support the described transactional workflow model in section 2.

Although Bonita’s persistence layer report and record the already executed project list, this initially col-
lected data lacks several details which are important for our workflow mining algorithm. Among the services
that Bonita integrates to control the cooperative aspects is JMS'. It is an J2EE!! framework that enables to
build and exchange messages. Each interaction between the user and the application (such as, project creation,
suppression, activity activation or termination, etc.) is recorded as an event. As such, the JMS messaging ser-
vices provide all the events which have just occurred from a workflow activity execution in Bonita. Based on
this, we built our log collecting API that can be considered as a spy in Bonita sniffing and collecting all the
transactions that can be produced and exchanged by the JMS messaging services during workflow instance
execution. Each event reports the name of the project, the name of the activity carried out, its state, the date
of its execution, etc. Afterwards, we have used the XML parser JDOM [49] to filter and read the data. JDOM
performs a lexical analysis for each XML file produced by the log collecting tool and translates it to the adopted
XML format conform to Definition 1.

7.1.2 Simulated logs

To evaluate the scalability of our approach, we have occasionally used simulated logs. Indeed, getting real logs
from big size workflow examples that are enough various turns out to be a difficult task. The advantage in using
simulated logs is that it is easier to fix and vary external factors ensuring a better diversity of the examples and
a better and more accurate validation. The scaling issue of our validation test is consequently better dealt with
simulated logs that enable us to cover a qualitatively and quantitatively various set.

In order to do this, we use a log simulating tool [50] which creates random XML logs by simulating
already designed workflow processes based on CPN tools 2. These tools support the modelling, the execution
and the analysis of colored Petri nets [46]. They enable to create simulated logs conforming with the XML
structure proposed in [32]. Modifications were brought to these tools to call predefined functions that create
logs for each executed workflow instance. This stage implies modifications in the modelling level of CPN
workflow declarations, particulary in the actions and the transition input/output levels. These functions indicate

9 Lesser General Public License

10 Java Messaging System

11" Java 2 Platform, Enterprise Edition

12 http://wiki.daimi.au.dk/cpntools/cpntools.wiki
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in particular the place, the prefix and the extension of the XML files that CPN tools create for each executed
workflow instance. Thereafter, we have used ProMimport'? to group or gather the simulated workflow logs.

7.2 Implementing workflow mining techniques

In this section, we describe the tools that we have implemented to validate the workflow mining techniques
described in sections 4 and 5. We have implemented our presented workflow patterns mining algorithms
within our prototype WorkflowMiner [8]. WorkflowMiner is written in Java and XProlog Java Prolog API'*. Work-
flowMiner, as seen in Figure 9, is composed of (a) an Events Analyser component dealing with the causal depen-
dency analysis (producing different SDT tables), (b) the Patterns Analyser component using causal dependencies
to discover workflow patterns and related transactional behaviour, and (c) the Performance Analyser exploiting
brute event-based log, discovered causal dependencies, and discovered partial and global workflow patterns
to measure performance metrics (more details in [51]). WorkflowMiner was also integrated to Bonita [52] as a
workflow re-engineering component. Starting from workflow instantiations, (1) event streams are gathered in
an XML log. In order to be processed, (2) these workflow log events are wrapped into a 1°? order logic format,
compliant with the WorkflowLog format in the Definition 1. (3) Mining rules are applied on resulted 1°¢ order
log events to discover workflow patterns. We use a Prolog-based presentation for log events, and mining rules.

Figure 9 WorkflowMiner Pipes and Filters Data Flow
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In addition to WorkflowMiner, our workflow patterns mining technique has been implemented within the
ProM framework [53] as a plug-in called “Workflow patterns miner” [52]. ProM is a plug-in environment for
process mining. The ProM framework is flexible with respect to the input and output format, and is also open
enough to allow for the easy reuse of code during the implementation of new process mining ideas. This plug-in
helps us to provide detailed comparison of our approach to other implemented mining tools. An evaluation of
our workflow mining technique has been done through sample and representative workflow applications [52].
Simulated logs for these examples were generated using the tool described in section 7.1.

7.3 Transactional checking and reengineering tool

We use Event Calculus (EC) formulas in order to check workflow transactional consistency and improve work-
flow execution reliability as it was described in section 6. Mukherjee et al. [54] discuss the relative merits and
demerits of analyzing workflows using temporal logic, event algebra, concurrent transactional (computational
tree logic), and Event Calculus (EC) logic. The concurrent transaction and the Event Calculus (EC) logics are
the most suitable for expressing workflows because they can handle generalized constraints and can represent

13 www.promimport.sourceforge.net

14 XProlog, www.iro.umontreal.ca/~vaucher/XProlog/
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control flow graphs with transition conditions on the arcs. Our approach uses the Discrete EC proposed by
Mueller [55] as an extension of the classic EC, to declaratively model event based requirements specifications.
We adopt an EC reasoning to check the initially designed transactional behaviour against the discovered trans-
actional behaviour. This approach is defined by the specification of the axioms describing the transitions carried
out and their effects on activities states during workflow instance executions. Compared to other formalisms,
the choice of EC is motivated by both practical and formal needs, and has several advantages. First, in contrast
to pure state-transition representations, the EC ontology includes an explicit time structure. This helps manag-
ing event-based systems where a number of input events may occur simultaneously. Second, the EC ontology
is close enough to popular WfMC standards and provide an automatic support into the logical representation.
Third, the semantics of non-functional requirements can be represented in EC, so that verification is once again
straightforward. Due the lack of space, we refer to [56] for the complete formal description of our transactional
workflow model.

The transformation of a process model to its EC specification is built as a parser that can automatically
transform a given set of transactional workflow patterns into EC formulas according to the definitions and de-
pendencies explained so far. In our tool, a pattern editor offers to the designer the different types of events and
fluent initiation predicates that have been identified in the workflow and supports the specification of rules as
logical combinations of these event and fluent initiation predicates. Designers may also use the editor to define
additional fluents or transitions to represent activities, activity states, and relevant initiation and holding pred-
icates through a graphical user interface that supports the specification of the process policies. Subsequently,
the user specifies the predicates and rules of each pattern.

Figure 10 The graphical interface of the process consistency checker
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When the workflow is specified, the editor can check its syntactic correctness. Afterwards, a transactional
consistency checker proposes to verify the correctness of the transactional behaviour according to the above de-
scribed rules. The user must load the process specification before the check consistency button can be enabled.
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Then he has to choose and select the patterns to be used. Following this, he can select component activities
and edit the domain definition of each one (transactional properties). When both the process specification and
the patterns specifications are loaded, the verification process is ready to be executed. The result of the process
verification can be saved in a file and the deviations specifications can be analyzed and used to create queries
to locate activities that could substitute malfunctioning or unavailable activities.

To enable the re-engineering phase, we use logical predicates of the initially designed model, but we com-
pare these predicates with the discovered process (effective workflow) which is the output of the workflow
mining tool and the input of this re-engineering tool. When one or several consistency predicates are unsatis-
fied, this means that we have a wrong transactional behaviour in the execution. Thus, it is possible to exactly
determine what happened. Eventually, a discovered pattern and its related suggestions and corrections are given
to the workflow designer. Our tool displays the deviations from the specifications. A screenshot of the graphical
interface of the process consistency checker is shown in Figure 10. At the verification back-end, we have used
the induction-based theorem prover SPIKE [57]. SPIKE was chosen for (i) its high automation degree, (ii) its
ability on case analysis, (iii) its refutational completeness (to find counter-examples), and (iv) its incorporation
of decision procedures (to automatically eliminate arithmetic tautologies produced during the proof attempt).

8 Related works

Some studies investigated the issues related to the exception handling and recovery from activity failures in
workflow management systems. A first discussion on workflow recovery issues has been presented in [58].
The necessity of workflow recovery concepts was partly addressed in [14]. Especially, the concept of business
transactions, introduced in [59], deals with some basic workflow recovery. A significant amount of work ap-
plies the concepts introduced in transaction management to business process environments. Hamadi et al. [7]
offer an exhaustive survey. Besides, they describe a framework for the specification of high-level recovery poli-
cies that are incorporated either with a single task or a set of tasks, called Recovery Regions. They propose an
extended Petri net model for specifying exceptional behavior in business processes and adapt the mechanisms
of the underlying Petri net at run time to handle exceptions while keeping the Petri net design simple and easy.
Recently, Indraksy et al. [60] focus on how to correctly specify dependencies in advanced transactions. The au-
thors enumerate the different kinds of dependencies that may be present in advanced transactions and classify
them in two broad categories: event ordering and event enforcement dependencies. Different event ordering
and event enforcement dependencies in an advanced transaction often interact in subtle ways resulting in con-
flicts and redundancies. They describe different types of conflicts that can arise due to the presence of multiple
dependencies and describe how one can detect such conflicts. Zongwei et al. [61] identify the exception han-
dling techniques that support conflict resolution in cross-organizational settings. In particular, they propose a
novel,“bundled” exception-handling approach, which supports (1) knowledge sharing exception specifications
and handling experiences, (2) coordinated exception handling, and (3) intelligent problem solving using case
based reasoning to reuse exception handling experiences.

In this article, we have presented a transactional workflow model that should be considered as a support
model to our workflow mining and re-engineering techniques which are the article’s main contribution. This
model is flexible enough to include additional recovery mechanisms. It can be customized for different kinds
of transaction models by restricting or extending the type of dependencies that can exist between the activities.
This customization is done by limiting or extending the types of the inter or intra activity dependencies. Thus,
the transactional dependencies can be enriched and modified to include further transactional behaviour relying
on specific or generic business semantics. Thanks to this flexibility, the extension or the adaptation of the above
described transactional workflow model can be easily deployed with minor changes to the workflow mining
approach.

There is only few research activities on process re-engineering based on process log analysis. Prior works
in this field is limited to estimating deadline expirations and exceptions prediction. In [62], van der Aalst et
al. check and quantify how much the actual behavior of a process, as recorded in message logs, conforms to
the expected behavior as specified in a process model. In [63,64], Sayal et al. describe a tool set on top of
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HPs Process Manager including a “BPI Process Mining Engine” to support business and IT users in managing
process execution quality by providing several features, such as analysis, prediction, monitoring, control, and
optimization. We also need to mention the work of van der Aalst et al. [65] for retrospective checks of security
violations which shows how a specific mining algorithm can be used to support intrusion detection. In a similar
context, Rozinat et al. [66] use log analysis techniques to measure process alignments, i.e. to compare the
execution behaviour with the intended behaviour. However, this work does not describe how to use the results
of this process alignment to improve or correct the process.

Obvious applications of process mining exist in model driven business process software engineering, both
for bottom up approaches used in business process alignment [67,68], and for top down approaches used
in workflow generation [69]. A number of research efforts in the area of workflow management have been
directed for mining workflow models. This issue is close to what we propose in terms of discovery. The idea of
applying process mining in the context of process management was first introduced in [70]. This work proposes
methods for automatically deriving a formal process model from a log of events related to its executions based
on workflow graphs. Cook and Wolf [71] investigated similar issues in the context of software engineering
processes. They extended their work initially limited to sequential processes to concurrent processes in [72].
Van der Aalst et al. propose an exhaustive survey in [32]. However, previous works in workflow mining seem
to focus on control flow mining perspectives.

To the best of our knowledge there are practically no approaches in workflow mining that address the issue
of failure handling and recovery except our works [10,45] which propose techniques for discovering workflow
transactional behaviour. This article may be seen as a first step in this area. Recently, new issues in control flow
mining have been addressed by [73] that propose genetic algorithms to tackle log noise problem or non-trivial
constructs using a global search technique. Bergenthum et al. use region based synthesis methods and compare
their efficiency and usefulness [74] . Our process mining approach can be distinguished by supporting local
discovery through a set of control flow mining rules that are characterized by a "local” pattern discovery en-
abling partial results to be discovered. It recovers partial results from log fractions. Moreover, even though the
non-free choice (NFC) construct is mentioned as an example of a pattern that is difficult to mine [32], our ap-
proach discovers an M-out-of-N-Join pattern which can be seen as a generalisation of the Discriminator pattern
that were proven to be inherently non free-choice. Recently, [75,73] propose a complete solution that can deal
with such constructs. Besides, our mining approach discovers more complex features with a better specification
of the “fork” operator (and-split, or-split, xor-split patterns) and the “join” operator (and-join, XOR-Join, and
M-out-of-N-Join patterns). We provided rules to discover seven most used patterns, but this set of patterns can
be easily enriched by specifying new statistical dependencies and their associated properties or by using the ex-
isting properties in new combinations. Our approach deals better with concurrency through the introduction of
the ”concurrent window” that proceeds dynamically with concurrency. Indeed, the size of the ”concurrent win-
dow” is not static or fixed, but variable according to the activity’s concurrent behaviour without increasing the
computing complexity. It is trivial to establish that the algorithms describing our approach are of polynomial-
complexity not exceeding the quadratic order O(nz). Indeed, these algorithms do not contain recursive calls
and contain no more than two overlapping loops whose length is equal to the number of Events within an
Eventstream. Due to the lack of space we can refer to [45,52] for a thorough description of the WorkflowMiner’s
architecture and a comparison to existing implemented workflow mining tools. At the end of this paper, we
present an annex describing some experimentations performed in our plug-in. These experimentations show
different workflow examples with different levels of complexity discovered in our plug-in.

9 Conclusion

Workflow management systems are increasingly deployed to deliver reliable e-business transactions across
organizational boundaries. To ensure a high service quality in such transactions, failure handling re-engineering
for reliable executions is needed. However, failed instance executions may arise because it is hard to predict
workflow transactional behavior that can cause an unexpected activity failure. In this article we have presented
an original approach to ensure reliable workflow transactional behaviour. Our work attempts to apply process
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log-based analysis to provide knowledge about discrepancies between the initially designed process model and
its execution instances represented by the log which can subsequently be used in a workflow re-engineering
process. Our approach starts from workflow logs and uses a set of mining techniques to discover the workflow
control flow and the workflow transactional behaviour. Then, based on a Delta Analysis of the initially designed
model and the discovered workflow, a set of rules is used to improve the recovery mechanisms. Our aim is to
be as close as possible to the business and conceptual choices of a workflow designer and the evolution needs
of workflow users expressed during runtime and reported by the workflow mining results.

Currently we are working on discovering additional patterns by using more metrics (e.g. entropy, periodic-
ity, etc.) and by enriching the workflow log. We are also trying to enhance workflow recovery mining techniques
by enriching workflow logs and extracting data flow dependencies. We are also interested in applying process
mining techniques in composite Web services. In [76], we proposed a set of mining techniques to discover
composite (web) service transactional flow in order to improve composite service recovery mechanisms. Our
work in [77] uses web services logs to enable the verification of behavioral properties in web service compo-
sition. The main focus of this work is not on on discovery, but on verification. This means that given an event
log and a formal property, we check whether the observed behavior matches the (un)expected/(un)desirable
behavior. Recently, we have specified in [56] a combined approach that describes a formal framework, based
on Event Calculus to check the transactional behavior of composite service before and after execution. Our
approach provides a logical foundation to ensure transactional behavior consistency at design time and report
recovery mechanisms deviations after runtime.

Table 11 Four Different “fork” and “join” operators

input (i),
output (;
action

(addATE(d,'G" ['complete"], calculateTimeStamp(), walid",]);

input (id);

output ()

acton
ifOK(id)
then 1(d+1)
else empty

acton
(addATE(d,'8"'complee'], calculateTimeStamp() gL )

Lid
input (id);
output (;

action
(addATE(d,'End" ['complete'], calculateTimeStamp(), wald' )

)
nput id);
tid gm“\ 0 m;m S\d]‘
(ceateCaseFie(d); muh%) gwf,“n b
am\pun . (addATE(id,'A""complete'], calculateTimeStampy(), walid",[);
(addATE(d,"Start" complete’], calculateTimeStamp(), wali" )
input id);
output ()
acton nput i)
(addATE(d,'C" 'complete'], calculateTimeStamp() wali" ) output )
aton
(addATE(id,"H 'complete’], calculateTimeStamp(), wald” }):

Simulated workflow by CPN

H
complete

complete

B
complete
D

Start
complete
complete

F
complete

End
complete

E
complete

£
=
k=]
&
g
2
S
2
=
3
&

Parallel Split pattern

£ 3
< &
S 5
£ =
g e}
£ 2
=4 E
& @

C
complete

G
complete

Discovered workflow by “Workflow patterns miner”




31

10 Annexe : Examples of workflow discovered “Workflow patterns miner”” plug-in

In this section, we present the discovered workflow results of some experiments executed within “Workflow
patterns miner” plug-in using CPN simulated tools. Namely, we used five different workflow examples with
different levels of complexity that cover various kind of “join” and “fork” operators describing some interest-
ing pattern combinations, concurrent flows and loops. Our aim is to discover these five workflow examples
from their logs. We note that the simulated workflows are represented using the Petri nets and the discovered
workflows are modeled using workflow patterns. The two models have an equivalent behavior.

10.1 Four different “fork™ and “join” operators

Table 11 describes a workflow that contains 2 “fork” operators and 2 “join” operators describing four different
types of patters : AND-join, AND-split, XOR-join, XOR-split.

10.2 Ordinary loop

Table 12 Ordinary loop example
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Table 12 describes a workflow that contains an 3-activity length ordinary loop (i.e. E, F, G). This loop is
designed in the discovered workflow using the patterns : XOR-split and XOR-join.

10.3 Short loop

Table 13 One activity short loop workflow example
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Table 13 describes a workflow that contains a short loop that involves one activity (i.e. E activity). As table
12, this loop is designed in the discovered workflow using the patterns : XOR-split and XOR-join. We note that
our mining algorithm can discover any kind of loop except the 2-activity length activity that needs a specific log

preprocessing (out of the scope of this paper). This preprocessing is able to distinguish between the concurrent
behavior and this special kind of loops.

10.4 Non free choice

Table 14 describes a workflow that contains the particular M-out-of-N-Join. This pattern describes the non free
choice special behaviors, a mix between the synchronization and the choice in the same pattern. The M-out-of-
N-Join pattern represents an implementation of this behavior [23].
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Table 14 A workflow example containing the M-out-of-N-Join pattern
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10.5 Concurrent behavior and loop

Table 15 describes a workflow that contains one-activity length loop (i.e activity I) concurrent with the flow
containing the activity F. The originality of this workflow comes from the complexity or the difficulty to
distinguish between these two types of behavior.
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Table 15 Concurrent behavior and loop example
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